

GEOLOGIA PER TUTTI

Breve corso introduttivo

Lezione 5 15 febbraio 2018

La tettonica

A cura di Manolo Piat

BIBLIOTECA CIVICA DI BELLUNO

Via Ripa, 3

Tel. 0437 948093 - biblioteca@comune.belluno.it http://biblioteca.comune.belluno.it

Cos'è la tettonica

La **tettonica** è lo studio delle deformazioni che hanno modificato la giacitura e l'assetto primario dei corpi rocciosi e delle superfici che li delimitano, a causa dell'azione di campi di sforzi.

In senso lato, è lo studio dell'architettura della litosfera terrestre. Come sinonimo si usa spesso il termine **Geologia Strutturale**.

Tutti i corpi rocciosi che osserviamo sulla superficie terrestre hanno subito deformazioni più o meno importanti del loro assetto originario.

I principali tipi di deformazione

I principali tipi di deformazione che interessano le rocce consistono in:

- **deformazione disgiuntiva** (fratture/giunti tettonici, faglie). Superfici di discontinuità dovute a una risposta fragile agli sforzi.
- deformazione plicativa (pieghe e foliazioni). Non interrompono la continuità della roccia, sono legate a una risposta plastica agli sforzi.

In genere si osservano diversi tipi di deformazioni associati tra loro.

Fratture e giunti tettonici (diaclasi)

Superfici di discontinuità lungo le quali non vi è scorrimento tra i blocchi a contatto. Si generano in risposta a variazioni di volume per:

- variazioni di pressione dei fluidi;
- campi di sforzi di origine tettonica;
- variazioni dello stato termico o della pressione litostatica;
- rilascio nel tempo di energia elastica immagazzinata.

Faglie

Superfici tettoniche lungo cui c'è stato scorrimento relativo delle due parti dell'ammasso roccioso, lungo la superficie stessa. Lo spostamento relativo subito da punti originariamente coincidenti è denominato *rigetto*.

La superficie lungo cui avviene il movimento è il *piano di faglia*. Può intersecare la superficie topografica (*faglia affiorante*) o chiudersi nel sottosuolo (*faglia cieca*). L'intersezione tra piano di faglia e superficie topografica è la *linea di faglia*.

Il volume roccioso posto superiormente al piano stesso prende il nome di *tetto*, il volume posto inferiormente prende il nome di *letto* o *muro*.

Se la superficie topografica viene dislocata dal movimento si forma una scarpata di faglia. L'erosione agisce maggiormente ove affiora la roccia meno resistente, determinando una scarpata di linea di faglia.

Tipi di faglie in base alla cinematica

In base allo spostamento relativo lungo il piano di faglia si distinguono:

Faglie normali o **dirette:** il volume roccioso di tetto è scorso verso il basso rispetto al letto. Indicano estensione della crosta. Associazioni di più faglie normali determinano lo stile a *horst e graben* (fosse e pilastri).

Faglie inverse: il volume roccioso di tetto è risalito relativamente al letto lungo il piano di faglia. Se la componente orizzontale è di notevole entità si parla di *sovrascorrimento*. Caratterizzano le catene montuose.

Faglie trascorrenti: il piano di faglia è subverticale, il movimento avviene lungo la sua direzione; possono essere trascorrenti destre o sinistre.

Criteri di riconoscimento di una faglia

La presenza di una faglia può essere desunta da:

- · Criteri geologici:
 - o effettivo affioramento della superficie di faglia;
 - o presenza di rocce riconducibili al movimento delle masse rocciose;
 - o contatto laterale non stratigrafico tra due unità rocciose diverse;
 - o ripetizione di una o più formazioni lungo la stessa successione.
- · Criteri morfologici:
 - la scarpata di faglia o di linea di faglia crea una fascia ad andamento regolare, rettilineo e con maggior pendenza;
 - o la zona di faglia può costituire una fascia di maggior erodibilità, con formazione di valli, allineamento di selle, corsi d'acqua, ecc.

Pieghe

Sono distorsioni che si originano per incurvamento e flessione del volume roccioso, senza interruzione della continuità dello stesso.

La forma più semplice (pieghe *cilindriche*) consiste nell'ondulazione di una superficie con profilo sinusoidale che si ripete sempre identico a se stesso.

Una superficie piegata naturale non si mantiene cilindrica per ampi tratti.

Le linee di massima curvatura sono dette *linee di cerniera* o *asse* della piega; i *fianchi*, zone con curvatura minore, raccordano zone con concavità alternata. Le *linee di flesso* separano domini con concavità rivolta in senso opposto.

La superficie ideale che unisce successive linee di cerniera è detta *piano as-siale* della piega. Si definisce *vergenza* di una piega l'inclinazione o il ribaltamento del suo piano assiale verso un dato punto cardinale.

Antiformi e sinformi

Quando la concavità della superficie piegata è rivolta verso l'alto la struttura prende il nome di *sinforme*, quando è rivolta verso il basso prende il nome di *antiforme*, quando è rivolta lateralmente prende il nome di *piega neutra*.

Se si considera la successione stratigrafica, le *sinclinali* hanno le rocce più recenti al nucleo, le anticlinali hanno le rocce più antiche. Nei casi più semplici le antiformi coincidono con le anticlinali, le sinformi con le sinclinali.

Criteri di riconoscimento di pieghe

- Criteri geologici:
 - o diretta osservazione della distorsione di superfici reali;
 - o per le pieghe a grande scala, variazione progressiva delle giaciture e/o ripetizione simmetrica di unità litologiche.
- Criteri morfologici:
 - Andamento della topografia, del reticolo idrografico, versanti montuosi con inclinazione uniforme.

Gli sforzi che determinano le deformazioni si generano nella litosfera per:

- seppellimento ed esumazione di un corpo roccioso, con conseguente variazione dello stato di compressione;
- variazione dello stato termico e di densità di un corpo roccioso;
- esistenza del campo gravitazionale;
- la dinamica litosferica (tettonica a zolle).

Dinamica litosferica

La Terra è costituita da involucri concentrici. Da un punto di vista della composizione, dall'interno verso l'esterno si riconoscono:

Nucleo: dal centro fino a 2900 km di profondità; è composto da Fe, Ni. Mantello: tra la crosta e il nucleo, è composto da silicati di Fe, Mg, Ca. Crosta: una continentale, più spessa (30-70 km), di composizione granitica) e una oceanica, più sottile (5-15 km), di composizione basaltica.

Da un punto di vista delle proprietà fisiche, invece:

Nucleo: diviso tra nucleo esterno liquido e nucleo interno solido;

Mesosfera: comprende il mantello intermedio e il mantello inferiore; la densità delle rocce, che sono solide, aumenta con la profondità;

Astenosfera: strato composto da rocce a comportamento quasi plastico (dal greco *asthenés*, debole), che si deformano senza fratturarsi.

Litosfera: costituita dalla crosta terrestre e mantello superiore, spessa 50-150 km. Si comporta in modo rigido (dal greco *lithos*, pietra).

La tettonica a zolle

Secondo questa teoria, la litosfera è divisa in *zolle* o *placche*, che poggiano sull'astenosfera plastica e subiscono movimenti relativi l'una rispetto all'altra; si riconoscono tre diversi tipi di margini di placca:

- **costruttivi** o **divergenti**: placche adiacenti si allontanano una rispetto all'altra;
- distruttivi o convergenti: le placche si avvicinano e si scontrano, con conseguente subduzione di una rispetto all'altra;
- conservativi o trasformi: le placche si muovono una fianco all'altra lungo grandi faglie.

Nello scontro tra zolle si possono formare catene montuose es., Alpi.

Tettonica del Bellunese

Il sollevamento delle Dolomiti è il risultato della collisione tra la placca africana e la placca europea (**orogenesi alpina**)

A livello regionale si riconoscono importanti faglie (sovrascorrimenti), come la Linea della Valsugana e la Linea di Belluno e pieghe a grande scala come l'Anticlinale Coppolo-Pelf, la Sinclinale di Belluno, ecc.

L'effetto più significativo è dato dall'attività sismica. La spinta maggiore è oggi spostata più a sud, ma le faglie lungo cui il sollevamento ancora avviene si estendono fin sotto i nostri piedi.

Bibliografia minima

BOSELLINI A., Storia geologica d'Italia: gli ultimi 200 milioni di anni. Bologna : Zanichelli, 2005

CORAZZON P., Scienze della Terra. Milano: Alpha test, 1999

DOGLIONI C., PEPPOLONI S., Pianeta Terra: una storia non finita. Bologna: Il Mulino, 2016

FUA D., SUTERA A., Il pianeta Terra. Milano: Le scienze, 1989

GIORDANO D., TOFFOLET L., Il paesaggio nascosto: viaggio nella geologia e nella geomorfologia del Parco Nazionale Dolomiti Bellunesi. Feltre: Parco Nazionale Dolomiti Bellunesi, 2002

IPPOLITO F. (a cura di), La dinamica della Terra. Milano: Le scienze, 1980

TREVISAN L., GIGLIA G., Introduzione alla geologia. Pisa: Pacini, 2005